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ABSTRACT Comprehensive protein function annotation is essential for understanding
microbiome-related disease mechanisms in the host organisms. However, a large
portion of human gut microbial proteins lack functional annotation. Here, we have
developed a new metagenome analysis workflow integrating de novo genome recon-
struction, taxonomic profiling, and deep learning-based functional annotations from
DeepFRI. This is the first approach to apply deep learning-based functional annota-
tions in metagenomics. We validate DeepFRI functional annotations by comparing
them to orthology-based annotations from eggNOG on a set of 1,070 infant metage-
nomes from the DIABIMMUNE cohort. Using this workflow, we generated a sequence
catalogue of 1.9 million nonredundant microbial genes. The functional annotations
revealed 70% concordance between Gene Ontology annotations predicted by DeepFRI
and eggNOG. DeepFRI improved the annotation coverage, with 99% of the gene cata-
logue obtaining Gene Ontology molecular function annotations, although they are
less specific than those from eggNOG. Additionally, we constructed pangenomes in a
reference-free manner using high-quality metagenome-assembled genomes (MAGs)
and analyzed the associated annotations. eggNOG annotated more genes on well-
studied organisms, such as Escherichia coli, while DeepFRI was less sensitive to taxa.
Further, we show that DeepFRI provides additional annotations in comparison to the
previous DIABIMMUNE studies. This workflow will contribute to novel understanding
of the functional signature of the human gut microbiome in health and disease as
well as guiding future metagenomics studies.

IMPORTANCE The past decade has seen advancement in high-throughput sequenc-
ing technologies resulting in rapid accumulation of genomic data from microbial
communities. While this growth in sequence data and gene discovery is impressive,
the majority of microbial gene functions remain uncharacterized. The coverage of
functional information coming from either experimental sources or inferences is low.
To solve these challenges, we have developed a new workflow to computationally
assemble microbial genomes and annotate the genes using a deep learning-based
model DeepFRI. This improved microbial gene annotation coverage to 1.9 million
metagenome-assembled genes, representing 99% of the assembled genes, which is
a significant improvement compared to 12% Gene Ontology term annotation coverage
by commonly used orthology-based approaches. Importantly, the workflow supports
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pangenome reconstruction in a reference-free manner, allowing us to analyze the
functional potential of individual bacterial species. We therefore propose this alterna-
tive approach combining deep-learning functional predictions with the commonly
used orthology-based annotations as one that could help us uncover novel functions
observed in metagenomic microbiome studies.

KEYWORDS genome, metagenome, orthology, pangenome, deep learning, functional
annotation, gene function, metagenome-assembled genomes, metagenomics,
microbiome

The advent of sequencing technologies has resulted in a substantial increase in meta-
genomic studies sequencing DNA of microbial consortia (microbiomes) inhabiting

various hosts and environments. This has led to a significant boost in known microbial
genomes, contributing substantially to our understanding of the genetic diversity encod-
ed in microbiomes. Although metagenomics provides a great potential to characterize
difficult-to-cultivate and uncultivated microbes, our ability to link specific genes to dis-
ease phenotypes is hampered by poor understanding of the functions and roles of the
majority of the newly discovered microbial genes (1, 2).

Comprehensive functional annotation is crucial in identifying disease-causing func-
tional changes in proteins, detecting antibiotic resistance genes (3, 4), and designing
new therapeutic strategies. Labor-intensive laboratory experiments still provide the
most reliable means of functionally annotating genes and the proteins they encode
(5). However, due to the rapid increase in the number of uncharacterized proteins,
such experimental methods and manual curation fail to scale up to accommodate
such a large amount of protein sequence data. This has created a huge sequence-to-
function gap which is still widening, because sequencing is high throughput, while
functional characterization continues to be relatively slow. The overall proportion of
human gut microbiome protein-coding genes with uncharacterized functions ranges
between 40 and 60% depending on the annotation method (1, 6). A recent study
reported that 27.3% of genes present in the Unified Human Gastrointestinal Genome
(UHGG) catalogue could not be mapped to functional databases, while 14.2% of genes
matching the Clusters of Orthologous Groups (COG) database were labeled as “func-
tion unknown” (7). Automated and scalable methods for microbial protein function
prediction are needed to address this gap.

Most functional annotation methods rely on inferring homology across databases such
as UniProt (8) and the NCBI’s reference sequence (RefSeq) database (9). Conventional
homology-based annotation methods are fast; however, they suffer from low functional
annotation coverage. Deep learning methods have been considered an effective comple-
ment (10–12), since they are able to predict protein functions on a large scale, irrespective
of sequence homology. Metagenome functional annotation can be performed either by
assembling sequence reads into contigs, followed by reconstruction of complete and accu-
rate metagenome-assembled genomes (MAGs) and mapping predicted genes to annotated
sequences (13), or by directly mapping individual reads to annotated gene sequences (e.g.,
see references 14–16). Various read mapping-based functional annotation workflows exist,
including HUMAnN2 (15), HUMAnN3 (17) MG-RAST (18), and MetaLAFFA (19). These work-
flows align short reads directly to a reference sequence catalogue to estimate functional
profiles. This approach is, however, limited and fails to annotate genes that lack a homolo-
gous counterpart in the reference collection. Sensitive profile-based metagenomics func-
tional prediction tools such as METABOLIC (20) have also been implemented. METABOLIC
takes as input genome sequences and queries them against hidden Markov model (HMM)-
based databases such as Kofam (21), TIGRfam (22), and custom metabolic HMM profiles.

Reconstruction of MAGs has proved to be a successful strategy for novel genome
discovery and functional characterization of complex microbial communities (7). The
sequencing reads are assembled into long contiguous DNA fragments and further clus-
tered into different bins based on depth of coverage and tetranucleotide frequency
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across samples (23, 24). Several studies have employed this technique, providing new
insights into the genetic diversity of the human gut microbiome and paving ways for
exploring microbial dark matter (25, 26). Despite these developments, it is difficult to
determine the accuracy of metagenomics function predictions, as the majority of the
protein functions lack experimental validation. For example, in databases such as
UniProtKB (The UniProt Consortium), which contains over 100 million protein sequences,
only 1% of the proteins have experimental Gene Ontology (GO) annotations (27, 28).

Widely used schemes for classifying protein functions include GO (29), Enzyme
Commission (EC) numbers (30), and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (31). Gene ontology (GO) terms are attractive, as they offer an accurate descrip-
tion of the protein functions, and relationships between those annotations. The system
represents function in a directed acyclic graph (DAG)-type relationship, where protein
attributes are divided into three main categories: molecular function (MF), biological pro-
cess (BP), and cellular component (CC) (29). Importantly, GO terms facilitate more com-
prehensive intermethod comparisons through these protein annotation relationships
even when the specificity of annotations differs between methods.

Comprehensive deep learning-based functional annotation has been applied in differ-
ent research fields, such as human genomics. However, its application in metagenomics is
lagging. We addressed this gap by developing a new metagenome assembly workflow
integrating de novo genome reconstruction, taxonomic profiling, and deep learning-based
gene annotations from DeepFRI (10). To the best of our knowledge, this is the first
approach in metagenomics to use deep learning-based functional annotations. We
validated the functional annotations by comparing them to orthology-based annota-
tions from eggNOG (32). We further show that such an approach almost exhaustively
annotates millions of metagenome-assembled genes, although the annotations are, on
average, less specific than the homology-based annotations from eggNOG. Finally, we
demonstrate integration of gene annotations and metagenome-assembled pange-
nomes using .1,000 infant metagenomes from the DIABIMMUNE cohort. This work-
flow contributes to the existing metagenomics pipelines by supporting pangenome
reconstruction in a reference-free manner, allowing tracking of shared genes in species.
Furthermore, we show that DeepFRI provides additional annotations in comparison to
the previous DIABIMMUNE analysis. In summary, combining gene annotations from
DeepFRI with the commonly used orthology-based annotations helps with understand-
ing the roles of novel microbial genes observed in metagenomic surveys and could
eventually close the sequence-to-function gap hindering most microbiome studies.

RESULTS
Workflow architecture. The workflow is fully automated for metagenomic assem-

bly, binning of metagenome-assembled genomes, construction of gene catalogue, and
functional annotation. It integrates state-of-the-art bioinformatic tools via Docker con-
tainers. The workflow is implemented using Workflow Description Language (WDL)
and allows flexibility of bioinformatic tool versioning and scalability of memory in
high-performance computing environments. This allows large-scale functional annota-
tions of metagenomics data by leveraging high-quality protein information to anno-
tate functions with higher coverage. It takes raw paired-end Illumina reads (short
reads) as input and performs data analysis in five phases: (i) assembly of sequencing
reads into contigs, gene prediction, and clustering to generate a gene catalogue, (ii)
functional annotation of the gene catalogue, (iii) binning of assembled contigs into
MAGs, (iv) taxonomic annotation of MAGs, and (v) mapping between MAGs and func-
tionally annotated gene catalogue (Fig. 1). We have developed a custom Python script
for mapping between metagenomic species and the functionally annotated gene cata-
logue. On completion, the workflow provides various output files, such as the MAGs
constructed, nonredundant gene catalogue, functional annotations, and gene mapper
table as tab-separated output files.

Undescribed diversity in infant gut metagenomes. To demonstrate feasibility and
robustness and to highlight several uses of the workflow data products, we analyzed
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metagenomic data from the DIABIMMUNE cohort (33) (https://diabimmune.broadinstitute
.org/diabimmune/). This constituted a longitudinal sample series from individual infants and
young children in Finland, Estonia, and Russia. Overall, we aggregated metagenome shot-
gun sequencing data from 1,070 samples, including 202 samples from Estonia, 586 samples
from Finland, and 282 samples from Russia. The average number of reads per sample was
1.49� 107 paired-end reads (minimum, 9.28� 103; maximum, 8.09� 107).

The first step for functional analysis was the construction of a nonredundant gene
catalogue. We performed de novo assembly of the metagenomes, resulting in a total of
17 million long contigs with lengths of $500 bp and an average of 16,510 contigs per
sample (minimum, 94 contigs; maximum, 60,979 contigs), collectively harboring
approximately 21.9 million open reading frames (ORFs), as predicted by Prodigal.
Clustering of these genes into gene families with .95% sequence similarity resulted in
a catalogue of 1.9 million nonredundant genes.

Metabat binning of contigs produced a collection of 7,174 MAGs, of which 2,255 were
nearly complete bacterial genomes ($90% completeness, ,5% contamination), which cor-
responded to 2 nearly complete MAGs per sample, on average. Taxonomic annotation of
each genome was carried out using GTDB-tk (34). The high-quality genomes spanned 202
bacterial species, with most MAGs representing the phyla Firmicutes (884 genomes),
Bacteroidota (823 genomes), and Actinobacteriota (296) and the genera Bacteroides (614
genomes), Bifidobacterium (268 genomes), and Faecalibacterium (124 genomes) (see Fig. S1a
and b in the supplemental material).

To visualize the distribution of high-quality, nearly complete genomes across phylogeny,
we built a maximum-likelihood phylogenetic tree based on high-quality, nearly complete
genomes. The tree was constructed with PhyloPhLAN (35) and visualized using
Interactive Tree of Life (v5.6.2) (36). The genomes spanned 10 bacterial classes,
including Coriobacteriia, Actinomycetia, Bacilli, Negativicutes, Clostridia, Campylobacteria,
Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobiae, and Bacteroidia (Fig. 2a).

FIG 1 Schematic workflow overview.
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We observed high phylogenetic dispersion in the genus Faecalibacterium. Faecalibacterium
has been shown to be highly diverse and to comprise multiple phylotypes (2).

To integrate information on gene homology from the gene catalogue and taxo-
nomic information obtained through MAGs, we tried to provide further insights into
the following question: are 95% gene families taxon specific or shared across genomes
of different species, genera, or even families? We selected only MAGS with a contami-
nation threshold of ,5% and calculated the number of gene families assigned with
multiple taxonomies. Interestingly, we found that a notable portion of the gene fami-
lies had multiple taxonomies assigned, 32,156 (3%) at the family level, 92,355 (8%) at
the genus level, and 179,355 (15%) at the species level (Fig. S1c). Although a part of

FIG 2 Phylogenetic analysis and taxonomic annotation of high-quality metagenome-assembled genomes. (a) Maximum-
likelihood phylogenetic tree of 2,255 high-quality, nearly complete genomes. The taxonomy of the MAGs was assigned
by GTDB-Tk. The innermost layer corresponds to 10 bacterial classes. The second and third rings represent the proportions
of genes annotated by DeepFRI and eggNOG. Bars in the outermost layer indicate the number of gene families per MAG.
(b) Distribution of annotated genes per class (bar plot shows mean proportion of annotated genes, and error bars show
5th and 95th percentiles of proportions within a taxonomical class on the x axis). “N” refers to the number of genomes in
each class.
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these observations could be explained by highly conserved genes with distant common
ancestors, we hypothesize that a portion of the shared genes reflect more recent hori-
zontal gene transfer events. Additional studies with more precise genome reconstruction
methods, such as through long-read sequencing and/or isolate strain sequencing, could
further quantify the prevalence of such gene transfer events.

Functional representation of the DIABIMMUNE infant metagenomes. To eluci-
date the functional composition of the gut microbiota, we annotated the nonredundant
gene catalogue (1.9 million genes) using DeepFRI and eggNOG. DeepFRI predictions
were defined in the following manner: DeepFRI scores of $0.2 (standard quality) and
DeepFRI scores of $0.5 (high quality). For comparisons between eggNOG and DeepFRI,
we focused on the molecular function branch of Gene Ontology and considered
DeepFRI annotations with a threshold above 0.2 to be significant. We first validated the
predicted annotations by comparing the level of concordance between both methods
based on the specificity of the GO terms, expressed as Shannon information content.
The information content (IC) is used to quantify the specificity of a GO term in the con-
text of the entire set of annotations, such that GO terms annotating many genes are con-
sidered general and hence contain low information content, while rarely occurring GO
terms are considered more specific and contain higher information content (IC values)
(37). We propagated the Gene Ontology annotations upward through the child-parent
relationships using a list of information content values obtained from reference 10, in
which IC was calculated as 2log2Prob(GOi), where Prob(GOi) is the probability of GO
term i occurring in the UniProt-GOA database (ni/n, where ni is the number of annota-
tions with a term i and n is the total number of annotated proteins in UniProt-GOA) (10).

By comparing consensus in the Gene Ontology annotations predicted by each method,
we observed that DeepFRI annotated more genes, although the annotations are, on aver-
age, less specific than those obtained with eggNOG (Fig. 3a). DeepFRI predicted an order of
magnitude more low-information-content gene functions (information content between 1
and 7) (see Table 1 at https://github.com/bioinf-mcb/metagenome_assembly/tree/master/
supplementary_tables). Previous DIABIMMUNE microbiome analysis relied on a homology-
based functional search in HUMAnN2 (33). We further included HUMAnN2 Gene Ontology
annotations to this comparison. HUMAnN2 predicted higher-information-content GO terms
to a larger number of genes’MF-GO terms (IC. 12) (Fig. 3a).

Next, we wanted to assess whether genes annotated by both methods gained func-
tion at the same information content level. We further stratified annotations into differ-
ent categories: (i) concordant annotations, where eggNOG and DeepFRI annotations
agree (genes obtained functions at the same information content level); (ii) discordant,
where eggNOG and DeepFRI annotations disagree but annotations from both methods
exist; (iii) DeepFRI unique (genes obtained function from only this method); and (iv)
eggNOG unique. The concordance between the methods revealed that DeepFRI pre-
dictions agree well with eggNOG predictions, with an average of 70% concordance
(Fig. 3b). The concordance between DeepFRI and HUMAnN2 was 86% on average
(Fig. 3c). An average of 84% of the annotations are concordant between eggNOG and
HUMAnN2 (Fig. S2b). We observed an increase in concordant annotations between
eggNOG and HUMAnN2 at higher information content levels, i.e., .12. On the other
hand, 16% of the annotations were discordant even though both methods are based on
sequence homology. The similar levels of concordance between DeepFRI and eggNOG/
HUMAnN2 support the reliability of DeepFRI predictions. Additionally, DeepFRI had a
high number of unique annotations, thus expanding the functional landscape of meta-
genome-assembled genes (Fig. 3d).

We then looked into functions encoded by the microbial genes. In total, nearly all
the gene clusters in the gene catalogue (1,895,540 [99%]) obtained GO molecular func-
tion annotations by DeepFRI standard quality (0.2 threshold), whereas only 219,634
(12%) genes obtained similar annotations by eggNOG. Figure S3 shows DeepFRI anno-
tation rate as a function of gene cluster size; we observed that the larger clusters were
well annotated. Further, we complemented the annotations by considering functional
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annotations from the eggNOG free text description, which consolidates information
obtained from several source databases, such as SMART/Pfam (32). A total of 1,372,653
(72%) genes obtained functional information from the eggNOG free text description.
We further compared differences in gene sets annotated by both methods. The Venn
diagram (Fig. 4a) shows the intersection among genes annotated by DeepFRI and
eggNOG, with 219,003 genes in common across the two gene sets. A total of 1.6 mil-
lion genes were unique to DeepFRI and 631 genes unique to eggNOG gene ontology.
Additionally, 1.3 million gene sets were common across DeepFRI and eggNOG free text
description annotations (Fig. 4b).

Filtering informative Gene Ontology terms. The Gene Ontology protein function
description is hierarchical, such that a protein can have multiple GO terms annotated,
and a term can have multiple relationships to broader parent terms and more specific
child terms (child-parent relationship) (29). For example, the molecular function term

FIG 3 Concordance between DeepFRI, eggNOG, and HUMAnN2 annotations. (a) The information content of gene functions predictions by
DeepFRI, eggNOG, and HUMAnN2. (b) Percentage of concordant and discordant annotations between DeepFRI and eggNOG per each
information content level. (c) Percentage of concordant and discordant annotations between DeepFRI and HUMAnN2 per information content
level. (d) Consensus between DeepFRI and eggNOG annotations. See Table 1 at https://github.com/bioinf-mcb/metagenome_assembly/tree/
master/supplementary_tables for the list of information content values.
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“ATP binding” has the parent term “binding.” For downstream analysis, we filtered out
the general gene ontology terms using a subset of 614 informative GO terms obtained
from previous work by Vatanen et al. (38), following the method proposed in referen-
ces 39 and 40. The informative GO categories were obtained by traversing the GO tree
from the root and selecting terms that satisfy the following parameters: (i) terms were
associated with more than 2,000 proteins (k value) and (ii) each of their descendant
terms contained fewer than 2,000 proteins (k = 2,000 equates to approximately 1 of ev-
ery 5,000 UniRef50 protein families). This informative gene ontology set provides more
resolution to extensively studied processes (33). Filtering of gene ontology terms
reduced the number of annotated genes by both methods, resulting in 365,472 genes
annotated by DeepFRI and 156,704 genes annotated by eggNOG. The Venn diagram
(Fig. 4c) shows the intersection of 84,089 genes common between DeepFRI and
eggNOG gene ontology. A total of 281,383 genes were unique to DeepFRI, and 72,615
genes were unique to eggNOG.

FIG 4 Comparison of predictions between DeepFRI, eggNOG, and HUMAnN2. (a) Venn diagram of the number of gene sets
annotated by DeepFRI and eggNOG gene ontology (all GO terms). (b) Three-way comparisons of gene sets annotated by
DeepFRI, eggNOG gene ontology (all GO terms), and eggNOG free text description. (c) Venn diagram comparisons of gene sets
annotated by DeepFRI and eggNOG using only informative gene ontology terms. (d) Abundance of genes (in CPM) annotated by
DeepFRI and eggNOG and by HUMAnN2 (informative gene ontology terms). The annotation is weighted by relative abundances
normalized to copies per million. Annotation rate as a function of cluster size is shown in Fig. S3.
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Finally, we evaluated the relative abundance of annotated genes between DeepFRI,
HUMAnN2, and eggNOG considering only genes annotated with informative Gene
Ontology sets. We computed the proportion of metagenomic gene abundance with
functional annotation as follows: (i) paired-end reads were mapped to the gene cata-
logue, and (ii) per-gene alignment statistics were then weighted based on the target
sequence length to produce abundance values for each gene family. We observed an
increase in the annotation coverage at the metagenome level by DeepFRI, with an aver-
age coverage of 25.6%, in comparison to HUMAnN2 and eggNOG, which had average
coverages of 23.4% and 14.5%, respectively (Fig. 4d). A Wilcoxon signed-rank test was
performed to compare the annotations between the methods. This revealed that
DeepFRI and eggNOG annotations were statistically different (P = 4.74 � 102177).
Similarly, there was a statistically significant difference between DeepFRI and HUMAnN2
annotations (P = 2.60 � 102155). The main molecular functions annotated by DeepFRI
and eggNOG are ATP binding (GO:0005524), structural constituent of ribosome
(GO:0003735), and zinc ion binding (GO:0008270) (see Table 2 at https://github.com/
bioinf-mcb/metagenome_assembly/tree/master/supplementary_tables).

We further investigated how DeepFRI performs at a higher threshold (DeepFRI
score $ 0.5). Figure S4 shows comparisons of concordance between eggNOG and
DeepFRI threshold (0.5). We observed an average agreement of 73% between eggNOG
and DeepFRI annotations (Fig. S4b). Additionally, a total of (845,897;44%) genes
obtained GO annotations. The comparisons between DeepFRI (high-quality threshold)
and eggNOG are shown in Fig. S5a to d.

Variation in GO abundance over time. Longitudinal trends are ubiquitous in
infant microbiome data. We therefore measured longitudinal effects on relative abun-
dance of a subset of GO terms using linear mixed-effect models. For each GO term
abundance (summed copies per million [CPM]), a linear mixed-effect model was fitted
with age (in months) at collection as a fixed effect and subject ID as a random effect
(assuming the same slope and different intercept per subject ID). We identified 8 GO
terms with statistically significant (P , 0.05) longitudinal trends using DeepFRI annota-
tions and 20 and 13 such GO terms using eggNOG and HUMAnN2 annotations, respec-
tively (Fig. S6a and b). For example, we observed a depletion of genes annotated with
ATP binding (GO:0005524) with age for DeepFRI and eggNOG annotations (Pearson R
correlations of 0.60 and 0.66, respectively), while HUMAnN2 annotations displayed a
different trend (increase in annotated genes over time (Pearson R = 0.51) (Fig. S6c).
Additionally, there was a depletion of genes annotated with magnesium ion binding
function (GO:0000287) with age for the three methods. DeepFRI-annotated GO terms
having less longitudinal trends might indicate that part of the trends observed in
eggNOG and HUMAnN2 annotations arise from database biases. For example, we pre-
viously noted a depletion of annotated genes in microbiomes of newborns compared
to microbiomes later in life (6, 41). Although DeepFRI annotations appear to be more
speculative by nature, they could also provide a conservative view of longitudinal
microbiome trends in infancy.

Pangenome diversity patterns within the infant metagenomes. The pangenome
can be defined as the entire gene repertoire of all strains in a species (42). Genes in a
pangenome are classified into two categories: core and accessory genes. The core
genes are shared by genomes within a species, while accessory genes are present in a
subset of the genomes within a species. The pangenomes were constructed in the fol-
lowing manner. We recruited nearly complete metagenome-assembled genomes
($90% completeness and ,5% contamination) and included species with at least 10
independent nearly complete MAGs. We then considered the genes present in $90%
of MAGs of each species core genes (accounting for the incompleteness of the MAGs),
while genes present in ,90% of MAGS were considered accessory genes. Combined
core and accessory genes constituted the pangenome of a species. The pangenomes
were significantly smaller than previous pangenomes constructed from the metage-
nomic species by gene covariance (33), indicating that the current approach was more
conservative (Fig. S7a).
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The pangenomes covered a total of 42 bacterial species (Fig. S7b) and consisted of a
total of 70,997 core genes (on average, 1,690 core genes per pangenome, ranging from
573 to 3,612 genes) and 355,761 accessory genes (on average, 8,470 accessory genes per
pangenome, ranging from 1,222 to 27,879 genes) (Fig. S7c and Table S1). Each species had
distinctly different core genome and pangenome sizes. Our pangenome analysis showed
that Veillonella parvula and Bifidobacterium pseudocatenulatum contained the smallest core
genomes, with 573 and 753 genes, respectively. In contrast, Escherichia coli contained the
largest core genome (3,612 genes). To investigate differences in intraspecies gene richness,
we analyzed the pangenome size in relation to the number of genomes (MAGs). We found
a strong correlation between the number of MAGs and the size of the pangenome, with a
Pearson correlation r value of 0.8 (Fig. 5a). Bacteroides ovatus and Blautia wexlerae displayed
a larger pangenome size than expected by the trend. Bacteroides species have been shown
to have large pangenome sizes (43). Their remarkable genome plasticity facilitates adapta-
tion to various ecological niches and interaction with the host immune system (44).
Akkermansia muciniphila, Bifidobacterium longum and Bifidobacterium bifidum had a smaller
pangenome than expected by the trend.

To explore the diversity within the pangenomes, we compared the accessory gene
repertoire of each species. We observed a wide variation in the gene content between
various species. Bacteroides species had the highest number of shared accessory genes
(accessory genes that were observed in more than one species) (Fig. 5b). This observa-
tion is consistent with a recent study that showed that Bacteroides species exchange
genes within the genus more frequently through horizontal gene transfer compared to
other species such as Bifidobacterium (45). Interestingly, accessory genomes of species
such as Veillonella parvula, Akkermansia muciniphila, Parasutterella excrementihominis,
and Sutterella wadsworthensis harbored very low numbers of shared genes, 76, 56, 6,
and 1, respectively, and the rest of the accessory genome was unique (Fig. 5b and
Table S1). Bacteroides dorei is one of the most diverse and prominent members in the
infant gut, playing an essential role in immune activation (33, 45). We wanted to look
into its genomic diversity by comparing its accessory genome to those of other
Bacteroides species. The analysis showed that Bacteroides dorei harbored 7,514 unique
accessory genes (accessory genes not found in any other species), representing 38% of
its accessory genome (Fig. S7d). One plausible explanation for this diversity could be
gene gain through horizontal gene transfer.

To obtain a better understanding of the functions encoded in the core and accessory
genomes, we annotated the pangenomes using DeepFRI and eggNOG. Here, we used only
informative GO terms. There was a noticeable difference between annotations predicted by
DeepFRI and eggNOG. Our results show that eggNOG annotated more functions on well-
studied genomes, such as Escherichia coli. The core genome of Escherichia coli had the highest
annotation level: 1,449 (40%) of core genes obtaining GO term annotations from eggNOG
and 880 (24%) from DeepFRI (Fig. 5c). This could be attributed to the fact that E. coli is an
extensively studied model organism (46). Moreover, this observation was supported by our
phylogenetic analysis that showed that eggNOG annotated more genes belonging to
Gammaproteobacteria (Fig. 2b). On the other hand, DeepFRI annotations were less sensitive
to taxa, although DeepFRI annotated more genes belonging to members of the genus
Bacteroides. The core genes were well covered, with a mean of 25.3% of the genes assigned
functions by DeepFRI, while accessory genome had a mean of 15.9% annotated genes.
Bacteroides vulgatus had the highest number of annotated genes (4,383 [7%] compared to
eggNOG, which annotated 928 [4.5%] genes) (Fig. 5c). Our analysis provides detailed identifi-
cation of the functional profile of these species and can guide future studies aimed at uncov-
ering potential mechanisms responsible for the diversity in Bacteroides. Pangenome func-
tional annotation at the DeepFRI high-quality threshold is shown in Fig. S8.

DISCUSSION

Comprehensive functional assignment of metagenomic sequences is crucial for
unlocking the microbiome’s clinical potential. Here, we provide a stand-alone and fully
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automated workflow implementing metagenomic assembly, construction of MAGs,
nonredundant gene cataloguing, and comprehensive gene function predictions. The
workflow performs different steps of metagenomics analysis in a highly reproducible
and scalable environment using Workflow Description Language (WDL). Its features
provide functional inference of each gene, including taxonomic classification through
better linkage of marker genes in the GTDB reference tree, as well as visualization of
nearly complete genomes. This allows robust characterization of the functional poten-
tial encoded in the microbial genomes.

To demonstrate the use of our workflow, we tested it on infant gut metagenomes
from the DIABIMMUNE cohort (33). The metagenomic single-sample assembly strategy

FIG 5 Pangenome patterns within the infant metagenomes. (a) Pangenome size in relation to the number of genomes (MAGs). (b) Number of unique (not
shared with other species) and shared accessory genes per pangenome. See Table S1 for a full pangenome size list. (c) Sizes of the core and accessory
genomes per species stratified by the functional annotation of genes using eggNOG and DeepFRI (known versus unknown function). Entries are ordered
according to the size of the pangenome (20 of 42 species used to construct the pangenomes). The number of annotated genes was computed using only
informative Gene Ontology sets.
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employed here (47) represents a scalable methodology for large-scale metagenome analy-
sis and profiling of functional diversity within microbial communities. Additionally, the
workflow conducts binning of contigs to high-quality genomes using Metabat2 (48).
We recovered MAGs with high completeness ($90%) and low contamination (,5%).
Construction of complete or nearly complete MAGs has enabled identification of valuable
new genomes from rare species and quantification of intrapopulation diversity (49–51).
Additionally, it has also been shown to identify novel genes with distinct functional prop-
erties associated with human diseases (23).

For functional annotation, we utilized the advantage of the ability of the deep
learning method to process massive amounts of data. DeepFRI ensures efficient and
accurate mapping of protein sequences to function annotation on a large scale. It ena-
bles discovery of novel protein functions by combining two aspects of information,
features learned from protein sequences and contact graphs derived from 3-dimen-
sional structures (10). Combining DeepFRI with the commonly used orthology-based
method eggNOG not only improved our annotation capabilities but also helped us
understand function better. Moreover, we provide an additional layer of function infor-
mation obtained from eggNOG, such as Pfam annotations (52).

The functional diversity within the human gut microbiome remains poorly charac-
terized, as most genes still lack functional annotation (7). By leveraging high-quality
protein information, we demonstrated that DeepFRI significantly improved the func-
tional annotation coverage of the assembled genes (99%). Further validation of the GO
terms predicted by DeepFRI showed a high level of concordance with eggNOG annota-
tions, 70% on average. This indicates that DeepFRI produces reproducible and relevant
predictions for the biological interpretation. We show that despite DeepFRI giving less
specific (generic) GO term annotations, it provides a more comprehensive functional
landscape of almost all metagenome-assembled genes. This increase in annotation
coverage represents a key step toward novel understanding of the human gut micro-
biome, thus alleviating the existing sequence-to-function knowledge gap. Moreover,
we provide an important functional resource for future interventions leveraging the
gut microbiome to improve health.

Another critical aspect of our workflow is the full support of pangenome analysis.
Pangenome analysis provides an undiscovered wealth of information for studying the di-
versity within species. Here, we provide a way to construct pangenomes in a reference-
free manner from nearly complete metagenome-assembled species ($90% completeness
and ,5% contamination). MAGs serve as an important resource in pangenome analyses,
especially where unculturable species or species without reference genomes are being
studied (7). The constructed pangenomes were of high quality, allowing us to identify
large number genes shared between the most highly abundant gut commensals, i.e.,
Bacteroides species. Moreover, the functional predictions generated from the species pan-
genomes revealed a striking difference between DeepFRI and eggNOG annotations.
Notably, DeepFRI annotated more functions coming from members of Bacteroides species.
The pangenome analysis done here could be leveraged for further studies aimed at under-
standing species acquired functions of biomedical relevance.

It should be noted that this workflow has some limitations. First, we tested the
workflow only on infant gut metagenomes. The comparisons performed here may not
be generalizable to other microbial communities. Therefore, more robust evaluation is
required to demonstrate the performance on complex metagenomes, such as human
skin metagenomes, environmental microbiomes (seawater/soil metagenomes), and
other specific communities. Second, DeepFRI provides only Gene Ontology annota-
tions; therefore, it is difficult to profile antibiotic resistomes (antibiotic-resistant genes)
and genes encoding carbohydrate-active enzymes (CAZymes) (53).

Given the potential and limitations highlighted above, future integrations of high-
quality structure information coming from DeepFRI graph convolutional network (GCN)
predictions will allow large-scale functional annotation of metagenomics data with
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higher accuracy. Additionally, we plan to incorporate KEGG orthology (31) and evaluate
genes and pathways associated with disease.

In conclusion, we show that the workflow is robust and reproducible for large-scale
metagenomics functional annotation, where short-read sequences can be fully processed
into annotated files for downstream analysis and visualization. This workflow contributes
to the existing pipelines by combining the strength of deep learning-based and orthol-
ogy-based functional annotation, thus annotating millions of metagenome-assembled
genes. Additionally, the workflow supports reference genome-free pangenome construc-
tion, allowing us to uncover shared genes between species. The workflow is available as a
Docker image and makes use of standard tools for metagenome analysis and functional
annotation. Implementation of the workflow in WDL allows extensive parallelization using
high-performance computing and cloud computing environments. Additionally, its modu-
lar architecture setup enables tool versioning while allowing users to tweak different pa-
rameters to suit their specific needs. The Docker images used in the workflow are publicly
available at https://github.com/bioinf-mcb/metagenome_assembly.

MATERIALS ANDMETHODS
Quality control and assembly.Metagenomics data contain sequencing artifacts such as low-quality

reads, host contamination and adapter sequences, which compromise downstream analysis. The quality
control phase utilizes kneadData (https://huttenhower.sph.harvard.edu/kneaddata/). KneadData com-
bines Trimmomatic for adapter sequence and low-quality read trimming (54), Bowtie2 (55) for removal
of host-derived reads, and Tandem Repeat Finder for removing tandem repeats in DNA (56).

After the quality control process, the workflow uses MegaHIT (v2.4.2) (47) to assemble each sample
individually into contigs. MegaHIT has been shown to reconstruct known genomes accurately by employ-
ing data structures known as the de Bruijn graph, which decomposes reads into k-mers, reducing the
memory requirements (13, 57). Additionally, it captures more genes, allowing higher resolution of func-
tional profiling and phenotype to genotype analysis of specific microbial communities. Assembled contigs
less than 500 bp long are filtered out to yield high-quality contigs.

Construction of the gene catalogue and gene abundance estimation. For gene annotation, open
reading frames from each contig (length$ 500 bp) are predicted using Prodigal (v2.6.3) (58). The gene prod-
ucts are then clustered at 95% sequence similarity using CD-HIT (v4.8.1) (59) to generate the nonredundant
gene catalogue. Thereafter, gene abundance quantification is computed by mapping paired-end reads from
each sample against the gene catalogue using the KMA tool (60). Hits to a sequence are weighted based on
the target sequence length and further normalized to produce counts in copies per million (CPM).

Binning of contigs to metagenome-assembled genomes and taxonomic classification. Construction
of metagenome-assembled genomes provides novel biological insights into genetic diversity within the
microbial communities (7, 26). Our workflow implements an adaptive binning approach using Metabat2
(v.2.3.0) (48) by clustering contigs into bins (MAGs) based on the use of tetranucleotide frequencies, dif-
ferential abundance, and coverage across samples. The workflow supports binning for each sample indi-
vidually, thus recovering a great number of high-quality bins. The minimum contig length used for
binning is 500 bp. Moreover, for each MAG, completeness and contamination are determined using sin-
gle-copy genes with CheckM (v1.0.12) (61). MAGPurify did not improve the results significantly, so we
decided not to include it as a part of the pipeline (Fig. S9). Users can then select MAGs of the desired
quality for downstream analyses. We selected nearly complete, high-quality genomes as those having
$90% genome completeness and ,5% contamination for downstream analysis.

Taxonomic classification is conducted using GTDB-Tk (v2.1.0) (34). GTDB-Tk allows robust taxonomic
classification by identifying single-copy marker genes from the Genome Taxonomy Database reference
genomes using HMMER (62). The domain-specific marker gene alignments are then concatenated into
multiple-sequence alignments and used to construct a reference tree by means of a maximum-likeli-
hood-based phylogenetic inference algorithm. The tool improves the resolution of microbial taxa by
classifying MAGs based on their position in the GTDB reference tree, evolutionary divergence, and aver-
age nucleotide identity to the reference genomes.

Functional annotation. Representative cluster centroids of the gene catalogue are annotated with
predicted gene functions using two complementary approaches; deep neural networks in DeepFRI (10),
and orthology-based annotation in eggNOG (evolutionary genealogy of genes: nonsupervised ortholo-
gous groups), using eggnog-mapper (v2.0.1) (32, 63) (options: -m diamond -d none –tax_scope auto –
go_evidence non-electronic –target_orthologs all –seed_ortholog_evalue 0.001 –seed_ortholog_score
60 –query-cover 20 –subject-cover 0). eggNOG provides accurate function prediction by inferring orthol-
ogy relationships and evolutionary history of proteins. The annotated genes are mapped to various
ontologies, thus accurately assigning each gene to its function. These ontologies include Gene Ontology
(29), Kyoto Encyclopedia of Genes and Genomes (KEGG) for metabolic pathway analysis (31), COG (64),
and SMART/Pfam domains for each group (52, 65).

On the other hand, DeepFRI (10) is a novel deep learning-based function annotation method which
applies GCNs to learn and extract features from protein sequences and structures. The method achieves
accurate prediction of GO terms in two stages: (i) the first step utilizes long short-term memory (LSTM)-
based language model, pretrained on sequences from the Pfam database (66), to extract features from
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PDB protein sequences (67), and then (ii) GCN architecture learns structure-function relationships using
three graph convolutional layers. DeepFRI has the ability to predict protein functions accurately irrespec-
tive of sequence homology and provide interpretability of its predictions via saliency maps. DeepFRI
outputs scores for each GO term prediction; it is trained such that scores propagate along the GO tree,
with higher scores toward the top of the tree and lower scores at the bottom of the tree. The confidence
metric for DeepFRI should be interpreted in the following way: DeepFRI scores of$0.2 indicate standard
quality, while DeepFRI scores of $0.5 indicate high quality.

Integration of gene functions, quantification, and metagenome-assembled genomes. We have
developed a custom Python script for generating mapping between functionally annotated nonredun-
dant genes and MAGs. The script takes in a variety of input files: gene catalogue including cluster mem-
bers, assembled contigs, and MAGs (including taxonomic annotations from GTDB and CheckM quality
control information).

Considering that the gene catalogue was created by clustering genes into a representative sequence (cent-
roid) using CD-HIT (59) at a sequence similarity threshold of 95%, we propagated functions within each gene
cluster and further annotated genes within MAGs. This establishes a link between microbial genes and species,
allowing reconstruction of the functional potential of individual bacterial species, providing a deeper and more
comprehensive insight into identification of species-specific genes associated with outcome of interest.

Quantification of individual gene abundances across a given metagenome sample is critical for under-
standing how variation in the functional composition can impact health as well as in understanding how
microbes adapt to various environments (68). We perform quantifications of each gene and then apply the
abundance values to quantify gene functions from DeepFRI and eggNOG. To estimate per-sample gene
abundances, the quality-controlled reads are aligned directly against the nonredundant gene catalogue
using KMA tool (60) with default parameters. The number of reads mapping to each gene is then used as a
proxy for its abundance in the sample. For example, the total number of reads mapped to each gene is nor-
malized by the length of the target gene sequence to produce counts in CPM. The relative abundance is cal-
culated as follows: (number of reads mapped to a target gene � 1,000,000)/total read counts.

MAGs include core genes that have specific and specialized functions as well as accessory genes
that are variably present in the genomes. We used MAGs to construct pangenomes in a reference-free
manner. To construct a pangenome of a given species, we recruited nearly complete MAGs ($90% ge-
nome completeness and ,5%) and species with at least 10 genomes. We then defined genes present in
$90% of MAGs of each species as core genes, while genes present in ,90% of MAGS are considered
accessory genes. This provides an additional dimension to the analysis of the functional repertoire of
core and accessory genomes and gives a glimpse into the functional diversity within species.

Code availability. The modular workflow and related Docker images are available at https://github
.com/bioinf-mcb/metagenome_assembly. The implementation of the workflow in WDL allows extensive
parallelization using Linux-based high-performance computing or cloud computing environments.
Detailed information about the program versions used and additional information can be found in the
GitHub repository.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 3.4 MB.
FIG S2, TIF file, 9.6 MB.
FIG S3, TIF file, 1.9 MB.
FIG S4, TIF file, 3.4 MB.
FIG S5, TIF file, 10.5 MB.
FIG S6, TIF file, 7.7 MB.
FIG S7, TIF file, 8.3 MB.
FIG S8, TIF file, 3.4 MB.
FIG S9, TIF file, 4.9 MB.
TABLE S1, XLSX file, 0.01 MB.
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