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Abstract
High-grade gliomas (HGGs), the most common and aggressive primary brain tumors in adults, inevitably recur due to incomplete
surgery or resistance to therapy. Intratumoral genomic and cellular heterogeneity of HGGs contributes to therapeutic resistance,
recurrence, and poor clinical outcomes. Transcriptomic profiles of HGGs at recurrence have not been investigated in detail. Using
targeted sequencing of cancer-related genes and transcriptomics, we identified single nucleotide variations, small insertions and
deletions, copy number aberrations (CNAs), as well as gene expression changes and pathway deregulation in 16 pairs of primary
and recurrent HGGs. Most of the somatic mutations identified in primary HGGs were not detected after relapse, suggesting a
subclone substitution during the tumor progression. We found a novel frameshift insertion in the ZNF384 gene which may
contribute to extracellular matrix remodeling. An inverse correlation of focal CNAs in EGFR and PTEN genes was detected.
Transcriptomic analysis revealed downregulation of genes involved in messenger RNA splicing, cell cycle, and DNA repair,
while genes related to interferon signaling and phosphatidylinositol (PI) metabolism are upregulated in secondary HGGs when
compared to primary HGGs. In silico analysis of the tumor microenvironment identified M2 macrophages and immature
dendritic cells as enriched in recurrent HGGs, suggesting a prominent immunosuppressive signature. Accumulation of those
cells in recurrent HGGs was validated by immunostaining. Our findings point to a substantial transcriptomic deregulation and a
pronounced infiltration of immature dendritic cells in recurrent HGG, which may impact the effectiveness of frontline immu-
notherapies in the GBM management.

Key messages
& Most of the somatic mutations identified in primary HGGs were not detected after relapse.
& Focal CNAs in EGFR and PTEN genes are inversely correlated in primary and recurrent HGGs.
& Transcriptomic changes and distinct immune-related signatures characterize HGG recurrence.
& Recurrent HGGs are characterized by a prominent infiltration of immature dendritic and M2 macrophages.
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Introduction

High-grade gliomas (HGGs) are the most common and aggres-
sive primary brain tumors in adults. Among those, glioblasto-
mas (GBMs) are highly heterogeneous, invasive malignant
brain tumors which harbor recurrent molecular alterations
disrupting pathways involved in regulation of growth, cell cy-
cle, DNA repair, control of chromatin state, and telomere length
[1]. Intratumoral heterogeneity of GBMs and the presence of
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self-renewing glioma stem cells that contribute to tumor initia-
tion, therapeutic resistance, and recurrence are major factors
contributing to poor clinical outcomes of GBM patients [2].
The most frequently altered genes in GBMs are PTEN, TP53,
EGFR, PIK3CA, PIK3R1, NF1, RB1, IDH1, and PDGFRA [3,
4]. Those alterations occur primarily by mutations, short dele-
tions and insertions (indels), and copy number aberrations
(CNAs). Genomic gains of chromosome 7 and losses of chro-
mosome 10 represent the most common gross chromosomal
abnormalities in GBMs [4]. Another common feature of
GBM is the overexpression of EGFR in more than 50% of
GBMs due to the focal amplification of its locus, which acti-
vates proliferation-related signaling and supports tumor growth
[5]. Whole-genome and whole-exome sequencing of multiple
regions from primary and paired recurrent GBMs has revealed
genetic alterations of the p53 pathway as a primary molecular
event. Divergent recurrences that share a few genetic alterations
with the primary tumor likely represent a clonal expansion of
cells that evolved during gliomagenesis [6].

Based on gene expression profiles, GBMs are divided into
proneural, neural, classical, and mesenchymal transcriptional
subtypes [7], whose prevalence changes on the basis of wheth-
er it is a primary or secondary tumor [2]. Molecular subtypes
of GBMs are further defined by DNA methylation patterns
[8]. Bulk tumor gene expression profiles originate not only
from glioma cells but also from stromal cells, including astro-
cytes, endothelial cells, and infiltrating immune cells of the
innate and adaptive immune systems. GBMs are known as
“immunologically cold” tumors due to severe immunosup-
pression which facilitates disease progression and limits suc-
cesses of immunotherapy [9]. Glioma-infiltrating microglia
and bone marrow–derived macrophages, which are the pre-
dominant immune cells in GBMs, contribute to tumor inva-
sion and create an immunosuppressive milieu [10].

Despite a significant progress in understanding alterations
in glioma genomics and the resulting deregulation of tran-
scription, there is still lack of knowledge regarding the molec-
ular deregulation during HGG progression and recurrence. A
deeper evaluation of genomic and transcriptomic variations
between primary and recurrent malignant gliomas may ex-
pand our knowledge on the molecular deregulation during
HGG progression and at the recurrence. Such efforts are un-
dertaken by the GLASS (The Glioma Longitudinal Analysis)
Consortium [11] focused on molecular profiling of tumor
specimens acquired at multiple time points along the course
of glioma progression (https://www.glass-consortium). In this
study, driven by a similar rationale, we performed targeted
sequencing of cancer-related genes and RNA sequencing of
16 primary and recurrent HGG pairs to visualize comparative
patterns of genomic alterations and transcriptional profiles.
From RNA-Seq data obtained from bulk tumors, we extracted
characteristics of immune subsets of HGGs and subsequently
inferred computational changes in the cellular components of

HGGs post recurrence. We identified and validated an im-
mune gene expression signature, which reflects immunosup-
pressive mechanisms within the tumor microenvironment.

Materials and methods

Sample collection, genomic DNA, and RNA extraction

In total, we collected 35 fresh frozen glioma samples,
representing grade III and IV HGGs (according to World
Health Organization (WHO) classification) from the neurosur-
gery clinics of the following hospitals: Clinical Department of
Neurosurgery St. Raphael Hospital, Andrzej Frycz
Modrzewski Krakow University, Krakow, Poland; Regional
Hospital, Medical University of Silesia, Sosnowiec, Poland;
and Mazovian Brodno Hospital, Warsaw, Poland (Table 1).
All patients signed an informed consent for use of their bio-
logical material for research purposes. The cohort contains 14
pairs of GBMs and 2 anaplastic astrocytomas (WHO grade
III). Most of the patients were treated by the standard Stupp
protocol, including surgery followed by radiotherapy plus
concomitant and adjuvant temozolomide (TMZ). In this co-
hort, 16 samples were primary and 19 recurrent paired tumors;
2 cases were patients who underwent 2rd and 3rd resections.
Blood samples were collected from each patient to identify the
somatic status of single nucleotide polymorphisms (SNPs),
indels, and CNAs. Total DNA, RNA, and protein from col-
lected glioma tissue samples were extracted using TRI
Reagent (Sigma-Aldrich, cat no. T9424-100ML), following
the manufacturer’s protocol. DNA was additionally purified
by a phenol–chloroform extraction and precipitated by etha-
nol. Briefly, isolated DNA was incubated with proteinase K
(600 μg/ml) to remove protein contamination and an equal
volume of phenol–chloroform–isoamyl alcohol mixture was
added. After centrifugation, the top aqueous phase was care-
fully transferred to a new tube, extracted with an equal volume
of chloroform, and centrifuged; 5 M NaCl was added to the
top aqueous phase; DNA was precipitated with 2 volumes of
100% ethanol. After centrifugation, the DNA pellet was
washed with 70% ethanol and dried at room temperature,
followed by resuspension in MQ water and frozen at − 20
°C. The isolated DNA was used for targeted exome sequenc-
ing and RNA for RNA-Seq, both procedures described in the
following sections (Suppl. Fig. S1A).

Panel design, genomic and transcriptomic library
preparation, and next generation sequencing

We designed a target enrichment DNA sequencing panel, in-
cluding 700 cancer-related genes comprising the exonic re-
gions. The target region spanning 7 MB (1 × 106 bp) covered
cancer-related sites with a strong emphasis on genes coding
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for epigenetic regulators (histone modifiers, chromatin mod-
elers, histone chaperones). Targeted exome sequencing was
performed as previously described [12]. RNA-Seq was per-
formed using the KAPA Stranded mRNA-Seq Kit (Illumina®
Platforms), required for poly(A) messenger RNA (mRNA)
capture and construction of stranded mRNA-Seq libraries.

Both DNA sequencing and RNA sequencing were performed
using the Illumina HiSeq® 1500 system.

Quality and integrity of total RNA was assessed with an
Agilent 2100 Bioanalyzer using an RNA 6000 Nano Kit
(Agilent Technologies, Ltd.). Strand-specific polyA-enriched
RNA libraries were prepared using the KAPA Stranded

Table 1 Summary of clinical characteristics of patients in this study

Patient’s ID Diagnosisa Age Sex Localizationb Type Surv.c Vars.d Therapye

PG1 AA 26 F Frontalis dex Primary 46 16 None

R1G1 AA 26 F Frontalis dex Recurrent 46 19 None

R2G1 AA 26 F Frontalis dex Recurrent 46 23 None

PG2 GBM 60 F Frontal dex Primary 14 78 R, CTX, DEX

R1G2 GBM 60 F Frontal dex Recurrent 14 15 R, CTX, DEX

PG3 GBM 55 F Frontal lobe Primary 16 39 R, DEX

R1G3 GBM 56 F Frontal lobe Recurrent 16 42 R, DEX

PG4 GBM 64 M Parietal dex Primary 12 35 R, CTX, DEX

R1G4 GBM 64 M Temporal dex Recurrent 12 13 R, CTX, DEX

PG5 GBM 59 M Parieto-occipital sin Primary 22 11 None

R1G5 GBM 59 M Parieto-occipital sin Recurrent 22 69 None

R2G5 GBM 59 M Parieto-occipital sin Recurrent 22 7 None

R3G5 GBM 59 M Parieto-occipital sin Recurrent 22 35 None

PG6 GBM 62 F Temporal sin Primary 10 33 R, CTX, DEX

R1G6 GBM 62 F Temporal sin Recurrent 10 11 R, CTX, DEX

PG7 GBM 34 F Parietal dex Primary 23 12 R, CTX, DEX

R1G7 GBM 34 F Parietal dex Recurrent 23 19 R, CTX, DEX

PG8 GBM 50 M Temporal sin Primary 13 16 R, CTX, DEX

R1G8 GBM 50 M Temporal sin Recurrent 13 38 R, CTX, DEX

PG9 AOD 43 F Frontal sin Primary 23 5 R, CTX, DEX

R1G9 AOD 43 F Frontal sin Recurrent 23 5 R, CTX, DEX

PG10 GBM 60 M Temporal dex Primary 16 16 R, CTX, DEX

R1G10 GBM 60 M Temporal dex Recurrent 16 13 R, CTX, DEX

PG11 GBM 44 M Parietotemporal sin Primary 19 11 R, CTX, DEX

R1G11 GBM 44 M Parietotemporal sin Recurrent 19 6 R, CTX, DEX

PG12 GBM 47 F Temporal sin Primary 26 11 R, CTX, DEX

R1G12 GBM 47 F Temporal sin Recurrent 26 11 R, CTX, DEX

PG13 GBM 71 F Temporalis dex Primary 16 15 R, CTX, DEX

R1G13 GBM 71 F temporalis dex Recurrent 16 19 R, CTX, DEX

PG14 GBM 70 F Frontal dex Primary 8 28 R, CTX, DEX

R1G14 GBM 70 F Frontal dex Recurrent 8 22 R, CTX, DEX

PG15 GBM 44 F Temporal sin Primary 14 6 R, CTX, DEX

R1G15 GBM 44 F Temporal sin Recurrent 14 11 R, CTX, DEX

PG16 GBM 77 F Parietal dex Primary 5 19 R, DEX

R1G16 GBM 77 F Parietal dex Recurrent 5 17 R, DEX

aHigh-grade glioma type where GBM indicates glioblastoma; AA indicates anaplastic astrocytoma, and AOD indicates anaplastic oligodendroglioma
b Tumor localization where sin indicates sinister (left) and dex indicates dexter (right)
c Survival time from primary diagnosis
d High-confidence somatic variants
e Adjuvant therapy where R indicates radiotherapy, CTX indicates chemotherapy, and DEX indicates dexamethasone
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mRNA Sample Preparation Kit according to the manufac-
turer’s protocol (Kapa Biosystems, MA, USA). Briefly,
mRNA molecules were enriched from 500 ng of total RNA
using poly-T oligo-attached magnetic beads (Kapa
Biosystems, MA, USA). Obtained mRNA was fragmented,
and first-strand complementary DNA (cDNA) was synthe-
sized using a reverse transcriptase. Second cDNA synthesis
was performed to generate double-stranded cDNA (dsDNA).
Adenosines were added to the 3′ ends of dsDNA, and adapters
were ligated (adapters from NEB, Ipswich, MA, USA).
Following adapter ligation, uracil in a loop structure of adapter
was digested by USER Enzyme from NEB (Ipswich, MA,
USA). Adapters containing DNA fragments were amplified
by PCR using NEB starters (Ipswich MA, USA). Library
evaluation was done with the Agilent 2100 Bioanalyzer using
the Agilent DNA High Sensi t ivity chip (Agilent
Technologies, Ltd.). Mean library size was 300 bp. Libraries
were quantified using a Quantus Fluorometer and QuantiFluor
dsDNA System (Promega, Madison, Wisconsin, USA).
Libraries were run in the rapid run flow cell and were
paired-end sequenced (2 × 76 bp) on HiSeq 1500 (Illumina,
San Diego, CA, 92122 USA).

Genomic analysis and detection of copy number
aberrations

Read trimming was applied to FASTQ files using
Trimmomatic [13] (version 0.36) with default parameter
values and paired-end mode in order to remove Illumina-
specific adapters, low-quality 5′ and 3′ bases, and short reads.
DNA sequencing reads were aligned to a reference genome
sequence (hg38) using NextGenMap [14] (version 0.5.2),
with default parameters and “strata” variables. Mark and re-
moval of duplicates was performed by Picard Tools [15] (ver-
sion 2.17.1). Only properly oriented and uniquely mapped
reads were considered for further analysis. For somatic calls,
a minimum coverage of 10 reads was established for both
normal and tumor samples. Additionally, variants with strand

bias were discarded; damaging coding variants with predicted
Sorting Intolerant From Tolerant (SIFT) values (SIFT < 0.05)
were considered for further analysis. Finally, ProcessSomatic
method from VarScan 2 [16] was applied to extract high-
confidence somatic calls based on variant allele frequency
(VAF) and Fisher’s exact test p value (VAF > 15%, normal
VAF < 5%, and a somatic p value of < 0.03). The final subset
of variants was annotated with Annovar [17] (2017Jul ver-
sion) employing the latest database versions (refGene, clinvar,
cosmic , avsnp150, and dbnsfp30a) . In para l le l ,
OncodriveCLUST algorithm was used to identify genes
whose mutations cluster in large spatial hotspots that could
provide an adaptive advantage to cancer cells [18].

In order to infer relative changes in copy number alterations
in HGGs, we first computed the somatic CNAs using data
frommatched tumor-normal pairs, followed by the application
of the Circular Binary Segmentation (CBS) algorithm.
Samtools (version 1.5) and VarScan 2 (version 2.4.3) were
used to compute the copy number variation (CNV).
Copynumber and copycaller were used with default parame-
ters but considering the normal/tumor input data ratio.

RNA splicing and transcriptomic analysis

We evaluated the complete novel splicing events (both donor
and acceptor sites of splicing are not in existing transcriptome
databases) in HGGs using RNA-Seq data. RSeQC [19] (ver-
sion 2.6.5) was used to detect splice junctions. RNA-Seq
mapped reads were summarized to genes and counted using
featureCounts [20] software (version 1.5.3).

Concerning the transcriptomic analysis, Trimmomatic
(version 0.36) was used with default parameters. RNA se-
quencing reads were aligned to a reference genome sequence
(hg38) using STAR aligner [21] (version 2.6) enabling the
twopassMode Basic option. Read duplicates were marked
with Picard Tools (version 2.17.1). Resulting RNA-Seq–
mapped reads were summarized and counted by genes using
featureCounts software (version 1.5.3), in paired and reverse
stranded mode. Pre-filtering low-count genes was performed,
followed by an analysis of differentially expressed genes with
DESeq2 [22] (version 3.7), using a multi-factor design which
included the paired sample status (recurrent/primary) to fit an
individual baseline for each patient (Suppl. Table 1).
Moreover, a Cook’s distance cutoff of 0.5 was imposed to
detect outliers in the cohort. Concurrently, raw counts were
normalized using a variance stabilizing transformation to bet-
ter estimate gene expression differences among samples or
conditions.

Tumor microenvironment and cell enrichment

In order to understand changes in the tumor microenviron-
ment during HGG progression, we performed an in silico

�Fig. 1 Mutational landscape of high-grade gliomas. a Frequency of high-
confidence non-synonymous somatic mutations (VAF > 15%, normal
VAF < 5%, and a somatic p value of < 0.03) occurring exclusively in
initial HGGs (cyan), exclusively in recurrent HGGs (salmon), and in both
(green). b Mutation waterfall plot showing somatic mutation types and
status found in at least 2 samples and with SIFT values < 0.05 in the case
of SNP. Types of somatic alterations are ordered by the frequency of the
occurrence in studied cohort. c Summary plot indicating the most com-
mon type of somatic mutations and nucleotide substitution in all cohorts.
d Positional clustering showing cancer-driver genes from the cohort,
using OncodriveCLUST algorithm and corrected by FDR < 0.1.
Numbers enclosed in square brackets represent the number of clusters
found per gene, and dots in red correspond to statistically significant
clusters. e, f Boxplots show the distribution of different nucleotide con-
versions across primary and recurrent HGG samples and the overall tran-
sition and transversion frequencies
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cell-type enrichment analysis with an xCell [23] webtool,
using the 64 immune and stroma signature set. Weak signa-
tures were filtered out for further analysis. In an effort to
validate main xCell findings, we applied an in silico marker
gene-based approach, MCP-counter [24], and three
deconvolution methods, CIBERSORT [25], quanTIseq [26],
and TIMER [27] to better infer the cellular composition of
HGG samples using bulk gene expression data.

Validation of findings using immunohistochemistry
and immunofluorescence

Tumor slides were deparaffinized and hydrated. Antigen re-
trieval was performed using pH 6 citrate antigen retrieval so-
lution (Dako), followed by 30 min of 10% peroxidase and
blocking solution (3% NHS) for 1 h at room temperature. A
detection system (Dako) was used according to the manufac-
turer’s instructions, followed by staining with hematoxylin. The
following immunohistochemistry (IHC) antibodies were used:
human CD163 (Abcam ab87099, 1:1000) and CD83 (Abcam
205343, 1:100). Immunofluorescence (IF) staining was per-
formed as follows: The slides were dried at room temperature
for 1.5 h after being transferred from the − 80 °C storage. The
slides were rinsed thrice in PBS, 5 min each for rehydration,
and were then blocked with 10% normal serum (donkey) made
in 0.1% Triton X-100 (Tx100)/PBS for 2 h at room tempera-
ture. The primary antibodies were diluted according to the man-
ufacturer’s instructions in 3% serum in PBS (+ Tx100) and
incubated overnight at 4 °C. Primary antibody was removed,
and the slides were washed thrice for 5 min each with PBS,
followed by incubation with respective secondary antibodies
conjugated with the fluorophore, Alexa Fluor® 488 donkey
anti-mouse IgG (Invitrogen A21202). The nuclei were stained
with DAPI, followed by mounting of the cover slip with anti-
fade fluorescent mounting medium (Dako, USA).
Immunofluorescence quantification was performed with
ImageJ; all cells in different 10 fields were counted, for each
patient, and the percentage of those cells was calculated.

Results

Somatic mutational landscape and copy number
aberrations in primary and recurrent high-grade
gliomas

Both primary and recurrent tumor samples harbored an aver-
age of 20 high-confidence somatic mutations (Table 1). We
sought to estimate how many of these mutations were main-
tained after the tumor relapse in 16 pairs of HGGs.
Comparison of somatic mutations found in the primary and
recurrent tumors shows that in most of the patients (14/16,
87.5%), a number of somatic variants unique to the primary
or the recurrent tumor sample were higher than those shared
between the two tumor samples (Fig. 1a). This suggests a
subclone re-emergence in the course of tumor progression, a
neutral evolution, or a polyclonal re-emergence [28].

In the genomic somatic analysis, in which non-synonymous
mutations that could directly affect the protein structure were
considered, we found TP53 (26%), PTEN (23%), PIK3R1
(20%), and IDH1 (17%) as the most frequently altered genes
in both primary and recurrent HGGs (Suppl. Fig. S1B). Other
less frequently mutated genes in the cohort were ATRX (11%),
EGFR (11%), and PIK3CA (11%), which is in agreement with
other studies [3, 29, 30]. Interestingly, in four HGG samples,
we identified a frameshift mutation in the ZNF384 gene (Fig.
1b). The ZNF384 gene encodes a C2H2-type zinc finger pro-
tein and functions as a transcription factor that regulates the
extracellular matrix genes [31]. Although the detected somatic
alteration is located outside any protein domain (Suppl. Fig.
S1C), this mutation may affect the protein stability. Moreover,
the identified ZNF384 in-frame deletion in HGG is also de-
scribed in other cancer types in the Catalogue of Somatic
Mutations in Cancer (COSMIC) (Suppl. Table 2).

In general, the most frequent variant type in the cohort was a
missense mutation where a cytosine (C) was substituted by a
thymine (T) (Fig. 1c). This could be a result of TMZ treatment,
as this drug is known to induce a disproportionate number of C
> T transitions in recurrent gliomas [32]. Additionally, we
found that high expression of ZNF384 inversely correlates with
survival in the TCGA-GBM/LGG dataset (Suppl. Fig. S1D).

We then used the OncodriveCLUST algorithm to identify
spatial clustering hotspots that could provide an adaptive ad-
vantage to cancer cells and, consequently, positive selection
during the clonal tumor evolution [18]. Results demonstrated
that TP53, IDH1, and PIK3R1 are the most frequentlymutated
genes, harboring significantly clustered mutations corre-
sponding to specific protein regions (Fig. 1d). The same anal-
ysis performed on primary and recurrent HGG samples as
independent cohorts revealed ZNF384 as a potential novel
candidate driver gene in the primary HGG cohort, as the spe-
cific mutation clustering was detected only in the primary
tumors (Suppl. Fig. S2A). Gene hotspots in the recurrent

�Fig. 2 Copy number aberrations in progression of HGGs. a Segments of
CNAs at a cohort level with rows denoting individual patients, where P
indicates primary tumor and R represents recurrent tumor. UCSC hg38
genome was used to determine the chromosomal coordinates which are
represented in columns by the corresponding number. CNA calling was
performed using circular binary segmentation (CBS) algorithm for seg-
mentation, and single-point outliers were smoothened before the analysis.
Focal copy number aberrations of b EGFR and c PTEN are represented
by the adjusted log ratio between blood DNA (reference) and tumor
DNA, shown in primary (teal)–recurrent (red) paired boxplots. Header:
top-right-corner blue icons indicate no focal copy number aberrations,
top-right-corner yellow triangle indicates inversely correlated EGFR
and PTEN focal CNAs, and top-right-corner green squares indicate no
correlation
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cohort were similar to those in the entire cohort (Suppl. Fig.
S2B). Concurrently, we inspected a number of transitions (Ti)
and transversions (Tv) in both primary and recurrent HGG
groups (Fig. 1e, f). Tv are more likely to alter the amino acid
sequence of proteins due to larger changes in the shape of the
DNA backbone with a bigger impact on regulatory DNA [33].
We noticed that the ratio of Ti/Tv slightly decreases in recur-
rent HGG; however, this change was negligible. We comput-
ed the somatic CNAs using data from matched tumor-normal
pairs, and we identified the presence of repeated and consis-
tent CNAs, mainly on chromosomes 7 and 10 (Fig. 2a), indi-
cating frequent DNA duplications or deletions in these areas,
which is in line with previous findings [8]. Amplification of
EGFRwas a common trait in most of the HGGs (75%, 12/16),
both primary and recurrent (Fig. 2b). This amplification was
maintained after recurrence, with varying intensities in the
patients. Further, we observed a lack of PTEN deletion in
several HGGs after recurrence (Fig. 2c). Strikingly, the copy
number of EGFR and PTEN was inversely correlated; in tu-
mors with higher levels of EGFR amplification, a higher level
of PTEN deletion was found in both primary and recurrent
cohorts (Fig. 2c, Suppl. Fig. S3).

Deregulation of splicing and gross changes in
transcription characterize recurrent HGGs

We employed the RSeQC package to comprehensively eval-
uate the RNA-Seq data, test sequence quality, GC, PCR and
nucleotide composition bias, sequencing depth, strand speci-
ficity, coverage uniformity, and read genomic distribution.
We found no significant differences in these parameters (data
not shown). However, we detected an increase in a proportion
of complete novel splicing events in recurrent HGGs in this
analysis (Fig. 3a), suggesting higher transcriptomic variability
post recurrence. This increase in alternative splicing could
produce transcriptomic instability, novel transcripts, and po-
tentially non-functional proteins.

Gene Ontology functional enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analyses were performed on the differentially expressed
genes. Analyses of KEGG pathways revealed a large
group of differentially expressed genes involved in inter-
feron (IFN) signal ing, IFN st imulat ion, phos-
phatidylinositol (PI) signaling, and sphingolipid metabo-
lism that were upregulated in recurrent HGGs. Genes in-
volved in cell cycle, base excision repair, DNA replica-
tion, and spliceosome were downregulated in recurrent
HGGs (Fig. 3b, Suppl. Fig. S4). The observed reduction
of spliceosome-related genes is in agreement with the ob-
served increases in novel splicing events, because
spliceosomes are crucial complexes for the maturation of
the transcribed pre-mRNA [34]. Using the Reactome data-
base, we demonstrated upregulation in pathways related to
interferon signaling, IFN-stimulated genes, and PI metabo-
lism in recurrent HGGs. On the other hand, pathways
downregulated in recurrent HGGs were linked to mRNA
splicing, DNA synthesis, repair, and replication (Fig.
3c, d). These findings support the notion that recurrent
HGGs are associated with upregulation of pathways impli-
cated in the immune response. Moreover, the results of the
analyses suggest that in recurrent HGGs, a vast number of
differentially expressed genes (704) coding for cell cycle,
DNA repair, and splicing proteins are downregulated. This
downregulation may lead to deregulation of cell cycle
phases, chromosome maintenance, cell cycle checkpoints,
and pre-mRNA processing (Suppl. Fig. S4–S5).

Increased expression of genes related to the immune
response and markers of M2 macrophages/immature
dendritic cells in the HGG microenvironment

Among differentially expressed genes in recurrent
HGGs, we found many genes that are related to the
immune response. xCell cell enrichment scores revealed
remarkable differences between primary and recurrent
HGG, primarily in abundance of immune cells such as
M2 (pro-tumorigenic) macrophages, immature dendritic
cells (iDCs), and T helper cells (Th1), but also in
megakaryocyte–erythroid progenitor (MEP) cells and
pro-B cells (Fig. 4a), among others. The iDC signature
was more prominent in recurrent HGGs. CIBERSORT
and quanTIseq approaches (Suppl. Fig. S6A-B) con-
firmed the increase of M2 macrophages in the recurrent
state, while MCP-counter and TIMER approaches
(Suppl. Fig. S6C-D) showed higher myeloid dendritic
cell enrichment scores in recurrent HGGs. On the other
hand, cell enrichment scores in monocytes and M0 mac-
rophages were higher in primary HGGs.

Expression of genes coding for numerous immunoglobu-
lins (Igs) and immunoglobulin-related molecules was more

�Fig. 3 Transcriptomic alterations and detection of differentially
expressed genes. a Complete novel splicing junction alterations in
primary and recurrent HGGs were detected using a reference gene
model from RefSeq (hg38). Data shown represent the arcsin
transformation, and the p value was calculated using the Wilcoxon
signed-rank test. b, c KEGG and Reactome analysis of differentially
expressed genes showing regulatory pathways in recurrent samples.
Raw counts were pre-filtered (> 10 reads within the cohort), Cook’s dis-
tance cutoff of 0.5 was imposed, and the Benjamini–Hochberg (BH)
procedure was used to correct for multiple testing. d Volcano plot shows
downregulated and upregulated genes (log2 fold change < 0 and log2 fold
change > 0, respectively, and BH FDR correction p < 0.05) in recurrent
HGGs relative to primary HGGs. Each dot above the dashed line (corre-
sponding to the q value = 0.05) represents one significantly altered gene.
Genes from selected functional KEGG and Reactome categories are
marked in different colors, as indicated
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prominent in recurrent HGGs (Fig. 4b); however, the levels of
expression did not pass the pre-filtering criteria in the differ-
ential gene expression analysis. Expression of markers of
tumor-associated M2 macrophages [35] was higher in recur-
rent HGGs, as depicted in the hierarchical clustering (Fig. 4c),
showing the importance of pro-tumorigenic macrophages in
glioma progression. Glioma-associated microglia/
macrophages (GAMs) are attracted and reprogramed by glio-
ma cells into invasion-supporting immunosuppressive cells
[12]. Accordingly, we found a pronounced expression level
of GAM biomarkers in recurrent HGGs (Fig. 4d), indicating a
higher abundance of these immune cells. We focused on
mRNA levels of specific differentially expressed markers for
M2 macrophages, iDC and DC in the dataset (Fig. 4e–g); we
observed an increase in mRNA levels for markers of iDC and
M2 macrophages.

To validate the above results, we used an antibody recog-
nizing the scavenger receptor cysteine-rich (SRCR/CD163)
for detection of M2 macrophages, antibody against dendritic
cell-specific ICAM-3-grabbing non-integrin 1 (DC-SIGN/
CD209) for the detection of mature dendritic cells (mDCs)
and immunosuppressive cells, and anti-CD83 antibody for
detecting mDCs. We found an increased number of CD209+

cells in recurrent GBMs when compared to primary GBMs
(Fig. 5a). Quantification of CD209+ cells confirmed the ob-
served changes (Fig. 5b). Staining with an antibody against
mDCs showed no differences between primary and recurrent
HGGs. We also detected a higher number of CD163+ cells in
the brain parenchyma and perivascular spaces in recurrent
GBMs when compared to primary ones.

Discussion

Understanding genomic and transcriptomic changes underly-
ing HGG progression and recurrence in the context of changes
in the tumor microenvironment provides essential insights in-
to the evolution of malignant gliomas and facilitates designing

a better treatment. In this study, we performed comprehensive
genetic and transcriptomic analyses of 16 pairs of primary-
recurrent high-grade gliomas, a majority of those being glio-
blastomas. The data presented here show the presence of some
well-described somatic mutations in genes such as TP53,
PTEN, PIK3R1, IDH1, ATRX, and PIK3CA in HGGs.
Somatic variants identified consistently in both primary and
recurrent HGGs represent a small fraction of the total detected
variants. This suggests that a large amount of somatic muta-
tions identified in primary HGGs is not present at recurrence,
which could be indicative of subclone substitution, where new
subclones harbor different mutations, as suggested by another
study [30] or by a neutral evolution and polyclonal re-
emergence [32].

Loss of chr10 and amplification of chr7 are common aber-
rations in GBMs [8], and these aberrations were detected in
our current CNA analysis. Profiles of CNAs were similar in
primary and recurrent HGGs. Focusing on EGFR and PTEN
CNAs, we found an inverse correlation between EGFR and
PTEN focal aberrations (Fig. 2c, Suppl. Fig. S3), indicating a
co-occurrence of these phenomena. EGFR amplification and
deletion of PTEN produce similar consequences in deregula-
tion of intracellular signaling activating pro-proliferative and
pro-survival pathways [8].

From the genomic analysis performed in the GLASS study
[36], a number of somatic variants specific to a primary or a
recurrent tumor sample were higher than those shared between
the two disease stages for most of the patients, which is in line
with our results. Besides, their analysis of CNVs during the
tumor’s progression suggests that amplification of chromo-
some 7 and deletion of chromosome 10 are found in both early
and later stages of the tumor evolution, notably in IDH-WT
specimens [36]. The analysis of cancer driver genes in the
GLASS cohort produced a set of genes consistent with our
findings; in addition, we found PIK3R1 as a potential cancer
driver gene.

We found a novel frameshift insertion candidate in the
ZNF384 gene which might affect protein stability. The zinc
finger protein 384 (ZNF384) is a transcription factor involved
in the pathobiology of acute lymphoblastic leukemia through
the ZNF384 gene fusion with the TET family genes [37].
ZNF384 (also known as nuclear matrix protein 4 (NMP4))
has nucleocytoplasmic shuttling activity and suppresses bone
anabolism, partially through the repression of genes that play
important roles in osteogenic lineage commitment and miner-
alization [38]. In pre-osteoblasts, embryonic stem cells, and
two blood cell lines, NMP4 binds to the promoters of genes
encoding unfolded protein response (UPR) regulators and
modulates their gene expression [38]. NMP4 may transcrip-
tionally repress c-Myc andGadd34, downregulating ribosome
biogenesis and global protein synthesis [39]. Interestingly,
high expression of ZNF384 inversely correlated with survival
(in TCGA-GBM/LGG dataset, Suppl. Fig. S1D).

�Fig. 4 Immune cell heterogeneity in primary and recurrent HGGs. a Cell
type enrichment analysis from normalized gene expression data using a
64-immune and stroma signature set shows significant differences in
enrichment scores between primary and recurrent cohorts. iDC, immature
dendritic cells; MEP, megakaryocyte–erythroid progenitor cells; MSC,
mesenchymal stem cells. p values were calculated using the Wilcoxon
signed-rank test, and the most significant signatures are presented. b–d
Heat maps show mRNA expression of b immunoglobulins and
immunoglobulin-related molecules, c expression levels of markers of
M2 macrophages, and d glioma-associated macrophages. Raw count
values were normalized using a variance-stabilizing transformation meth-
od from DESeq2, and samples were clustered using Ward’s method. e–g
Box plots representing markers selected for immunohistochemistry:
CD163, CD83, and CD209, respectively
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Transcriptomic analyses of HGGs at diagnosis and relapse
showed downregulation of genes related to mRNA splicing,
cell cycle, and DNA repair, with concomitant upregulation of
genes related to interferon signaling. Deregulation of mRNA
splicing, which was found in the pathway enrichment analysis
(Fig. 3b, c), is consistent with differences in splicing isoforms
between the tested groups (Fig. 3a). Abundance of splice var-
iants and downregulation of genes coding for a splicing ma-
chinery suggests that spliceosome functions and mRNA pro-
cessing are disrupted in recurrent HGGs. Cancer-specific
splicing isoforms may be functionally distinct from the canon-
ical isoforms found in normal tissues. As components of the
splicing machinery are druggable, this deregulation could be
exploited to improve clinical outcomes [40].

Further, functional analysis of differentially expressed
genes demonstrated upregulation of IFN signaling–related
genes. IFNs have anti-tumor [41] and anti-proliferative activ-
ity against glioblastoma cells [42], but autocrine IFN signaling
contributes to the immune evasion of glioma cells [43].
Downregulation of numerous genes involved in the regulation
of cell cycle and cell cycle checkpoints could be a conse-
quence of IFN upregulation [42, 43]. Upregulation of
mRNAs coding for components of PI signaling pathway
(Fig. 3b) or PI metabolism (Fig. 3c) suggests a lipid second
messenger deregulation in recurrent HGGs, which could re-
sult in an enhancement of cell migration and invasion.

Computational analysis of the immune microenvironment of
HGGs during progression showed remarkable differences in the
abundance of immune cells, mainly pro-tumorigenic (M2) mac-
rophages, immature dendritic cells, and T helper cells. Dendritic
cells are central regulators of the adaptive immune response,
responsible for cancer recognition and eradication [44].
Activated, mature DCs are the main antigen-presenting cells for
initiating adaptive immune responses, whereas immature DCs
are implicated in tolerance and induction of regulatory T cells
[45]. Antigen-presenting function of DCs is lost or inefficient in
malignant gliomas [46]. Tumor-infiltrating DCs (TIDCs) may
influence tumor progression, as seen in relapsed prostate cancer
patients who had higher densities of immature TIDCs than their
primary tumors [47]. Our results demonstrate an accumula-
tion of immunosuppressive cells (CD209+ cells) in recurrent
HGGs that might disable anti-tumor responses and potentiate
immunosuppression. The presence of a strong pro-

tumorigenic macrophage signature and accumulation of
phagocytic CD163+ cells [48] in recurrent HGGs, which is
partially in line with GLASS’s in silico cell enrichment re-
sults [36], indicates the tumor supportive microenvironment
and potentiation of immunosuppression post recurrence.
These processes could be the main obstacles in effective
glioma immunotherapy and must be overcome before intro-
ducing frontline immunotherapies in GBM.
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